Axial dynamics, stability, and interspecies similarity of bacterial community structure in the highly compartmentalized gut of soil-feeding termites (Cubitermes spp.).
نویسندگان
چکیده
The highly compartmentalized gut of soil-feeding termites is characterized by pronounced axial dynamics in physicochemical conditions and microbial processes. In a companion paper (D. Schmitt-Wagner, M. W. Friedrich, B. Wagner, and A. Brune, Appl. Environ. Microbiol. 69:6007-6017, 2003), we demonstrated that the variety of physicochemical conditions in the different gut compartments of Cubitermes spp. is reflected in the diversity of the respective intestinal microbial communities. Here, we used molecular fingerprints of 16S rRNA genes of the bacterial community, obtained by terminal restriction fragment length polymorphism (T-RFLP) analysis, to describe the axial dynamics of the bacterial community structure in the different gut sections. Comparison of the T-RFLP profiles with the predicted terminal restriction fragments of the clones in clone libraries of the gut segments in Cubitermes orthognathus confirmed that all hindgut sections harbored distinct bacterial communities. Morisita indices of community similarity, calculated by comparing the different patterns, revealed large differences between the bacterial communities of soil, gut, and nest material and also among the individual gut sections. By contrast, comparison of the homologous gut segments of different Cubitermes species indicated that the three termite species investigated possessed a similar, gut-specific microbiota that remained comparatively stable even during several months of maintenance in the laboratory.
منابع مشابه
Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.).
The hindgut of soil-feeding termites is highly compartmentalized and characterized by pronounced axial dynamics of the intestinal pH and microbial processes such as hydrogen production, methanogenesis, and reductive acetogenesis. Nothing is known about the bacterial diversity and the abundance or axial distribution of the major phylogenetic groups in the different gut compartments. In this stud...
متن کاملAxial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus.
Methanogenesis represents an important electron sink reaction in the hindgut of soil-feeding termites. This is the first comprehensive analysis of the archaeal community structure within the highly compartmentalized intestinal tract of a humivorous insect, combining clonal analysis and terminal restriction fragment (T-RF) length polymorphism (T-RFLP) fingerprinting of the archaeal communities i...
متن کاملDifferences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.
In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of...
متن کاملLocalization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.).
Methanogenesis and homoacetogenesis occur simultaneously in the hindguts of almost all termites, but the reasons for the apparent predominance of methanogenesis over homoacetogenesis in the hindgut of the humivorous species is not known. We found that in gut homogenates of soil-feeding Cubitermes spp., methanogens outcompete homoacetogens for endogenous reductant. The rates of methanogenesis we...
متن کاملComparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types.
Termites are an important component of tropical soil communities and have a significant effect on the structure and nutrient content of soil. Digestion in termites is related to gut structure, gut physicochemical conditions, and gut symbiotic microbiota. Here we describe the use of 16S rRNA gene sequencing and terminal-restriction fragment length polymorphism (T-RFLP) analysis to examine methan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 10 شماره
صفحات -
تاریخ انتشار 2003